feATURES

- One External R Sets Cutoff Frequency
- Root Raised Cosine Response
- 3mA Supply Current with a Single 3V Supply
- Up to 64 kHz Cutoff on a Single 3V Supply
- 10th Order, Linear Phase Filter in an S0-8
- DC Accurate, $\mathrm{V}_{0 S(\mathrm{MAX})}=5 \mathrm{mV}$
- Low Power Modes
- Differential or Single-Ended Inputs
- 80dB CMRR (DC)
- 82dB Signal-to-Noise Ratio, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$
- Operates from 3 V to $\pm 5 \mathrm{~V}$ Supplies

APPLICATIONS

- Data Communication Filters for 3V Operation
- Linear Phase and Phase Matched Filters for I/Q Signal Processing
- Pin Programmable Cutoff Frequency Lowpass Filters

DESCRIPTIOn

The LTC ${ }^{\circledR} 1569-6$ is a 10 th order lowpass filter featuring linear phase and a root raised cosine amplitude response. The high selectivity of the LTC1569-6 combined with its linear phase in the passband makes it suitable for filtering both in data communications and data acquisition sys-
tems. Furthermore, its root raised cosine response offers the optimum pulse shaping for PAM data communications. The filter attenuation is 50 dB at $1.5 \bullet \mathrm{f}_{\text {CUTOFF }}, 60 \mathrm{~dB}$ at $2 \cdot \mathrm{f}_{\text {CUTOFF, }}$ and in excess of 80 dB at 6 • $\mathrm{f}_{\text {CUTOFF. }}$ DC-accuracy-sensitive applications benefit from the 5 mV maximum DC offset.

The LTC1569-6 sampled data filter does not require an external clock yet its cutoff frequency can be set with a single external resistor with a typical accuracy of 3.5\% or better. The external resistor programs an internal oscillator whose frequency is divided by either 1,4 or 16 prior to being applied to the filter network. Pin 5 determines the divider setting. Thus, up to three cutoff frequencies can be obtained for each external resistor value. Using various resistor values and divider settings, the cutoff frequency can be programmed over a range of six octaves. Alternatively, the cutoff frequency can be set with an external clock and the clock-to-cutoff frequency ratio is 64:1. The ratio of the internal sampling rate to the filter cutoff frequency is 128:1.

The LTC1569-6 is fully tested for a cutoff frequency of 64 kHz with a single 3 V supply.

The LTC1569-6 features power saving modes and it is available in an S0-8 surface mount package.

[^0]TYPICAL APPLICATION

Single 3V Supply, 64kHz/16kHz/4kHz Lowpass Filter

Frequency Response, flcutoff $=64 \mathrm{kHz} / 16 \mathrm{kHz} / 4 \mathrm{kHz}$

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage ... 11V
Power Dissipation. 500 mW
Operating Temperature
LTC1569C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1569I.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
	LTC1569CS8-6 LTC1569IS8-6
$\mathrm{V}^{-} 4$ \qquad 5 DIV/CLK S8 PACKAGE 8-LEAD PLASTIC SO	S8 PART MARKING
$\mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} \mathrm{N}$	$\begin{aligned} & 15696 \\ & 156916 \end{aligned}$

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{S}=3 V\left(V^{+}=3 V, V^{-}=0 V\right)$, f CUTOFF $=64 \mathrm{kHz}, R_{\text {LOAD }}=10 \mathrm{k}$ unless otherwise specified.

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Filter Gain		$\begin{aligned} & \hline \mathrm{f}_{\text {IN }}=1280 \mathrm{~Hz}=0.02 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=12.8 \mathrm{kHz}=0.2 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=32 \mathrm{kHz}=0.5 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=51.2 \mathrm{kHz}=0.8 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {II }}=64 \mathrm{kHz}=\mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {II }}=97.5 \mathrm{kHz}=1.5 \bullet \mathrm{f}_{\text {CUTOFF }} \text { (LTC1569I) } \\ & \mathrm{f}_{\text {IN }}=97.5 \mathrm{kHz}=1.5 \bullet \mathrm{f}_{\text {CUTOFF }} \text { (LTC1569C) } \\ & \mathrm{f}_{\text {IN }}=128 \mathrm{kHz}=2 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=192 \mathrm{kHz}=3 \bullet \mathrm{f}_{\text {CUTOFF }} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} -0.05 \\ -0.25 \\ -0.65 \\ -1.3 \\ -5.3 \end{gathered}$	$\begin{gathered} \hline 0.05 \\ -0.15 \\ -0.55 \\ -1.0 \\ -3.8 \\ -60 \\ -60 \\ -62 \\ -71 \end{gathered}$	$\begin{gathered} 0.15 \\ -0.05 \\ -0.4 \\ -0.7 \\ -2.4 \\ -40 \\ -48 \\ -50 \\ -60 \end{gathered}$	$d B$
	$\begin{aligned} & \mathrm{V}_{S}=2.7 \mathrm{~V}, \mathrm{f}_{\text {cLL }}=1 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{CuTOOFF}}=15.625 \mathrm{kHz}, \\ & \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}_{\text {P-P, }} \text { Pin } 6 \text { Shorted } \\ & \text { to Pin 4, External Clock } \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {IN }}=312 \mathrm{~Hz}=0.02 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=3125 \mathrm{kHz}=0.2 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=7812 \mathrm{kHz}=0.5 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & f_{\text {IN }}=12.5 \mathrm{kHz}=0.8 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & f_{\text {IN }}=15.625 \mathrm{kHz}=\mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=23.44 \mathrm{kHz}=1.5 \bullet \mathrm{f}_{\text {CUTOFF }}(\text { LTC1569I) } \\ & \mathrm{f}_{\text {IN }}=23.44 \mathrm{kHz}=1.5 \bullet \mathrm{f}_{\text {CUTOFF }} \text { (LTC1569C) } \\ & \mathrm{f}_{\text {IN }}=31.25 \mathrm{kHz}=2 \bullet \mathrm{f}_{\text {CUTOFF }}(\text { LTC1569I) } \\ & \mathrm{f}_{\text {IN }}=31.25 \mathrm{kHz}=2 \bullet \mathrm{f}_{\text {CUTOFF (LTC1569C }} \\ & \mathrm{f}_{\text {IN }}=46.88 \mathrm{kHz}=3 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \hline \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & -0.12 \\ & -0.25 \\ & -0.65 \\ & -1.1 \\ & -3.6 \end{aligned}$	$\begin{gathered} 0.05 \\ -0.15 \\ -0.55 \\ -0.9 \\ -3.4 \\ -54 \\ -54 \\ -60 \\ -60 \\ -66 \\ \hline \end{gathered}$	$\begin{gathered} 0.16 \\ -0.05 \\ -0.4 \\ -0.7 \\ -3.2 \\ -48 \\ -50 \\ -52 \\ -55 \\ -60 \\ \hline \end{gathered}$	$d B$
Filter Phase	$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4 \mathrm{MHz},$ $\mathrm{f}_{\text {CutOFF }}=62.5 \mathrm{kHz}$, Pin 6 Shorted to Pin 4, External Clock	$\begin{aligned} & \mathrm{f}_{\text {IN }}=1250 \mathrm{~Hz}=0.02 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=12.5 \mathrm{kHz}=0.2 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=31.25 \mathrm{kHz}=0.5 \bullet \mathrm{f}_{\text {CUTOFF }} \\ & f_{\text {IN }}=50 \mathrm{kHz}=0.8 \bullet f_{\text {CUTOFF }} \\ & f_{\text {IIN }}=62.5 \mathrm{kHz}=\mathrm{f}_{\text {CUTOFF }} \\ & \mathrm{f}_{\text {IN }}=93.75 \mathrm{kHz}=1.5 \bullet f_{\text {CUTOFF }} \\ & \hline \end{aligned}$		$\begin{gathered} -114 \\ 79 \\ -83 \\ 156 \end{gathered}$	$\begin{gathered} \hline-11 \\ -111 \\ 82 \\ -79 \\ 162 \\ -91 \end{gathered}$	$\begin{gathered} -108 \\ 85 \\ -75 \\ 168 \end{gathered}$	$\begin{aligned} & \hline \text { Deg } \\ & \hline \end{aligned}$
Filter Cutoff Accuracy when Self-Clocked	$\mathrm{R}_{\mathrm{EXT}}=10.24 \mathrm{k}$ from Pin 6 to Pin 7, $V_{S}=3 V$, Pin 5 Shorted to Pin 4				5kHz \pm		
Filter Output DC Swing (Note 6)	$V_{S}=3 \mathrm{~V}$, Pin $3=1.11 \mathrm{~V}$		\bullet	1.9	2.1		$\begin{aligned} & V_{P-P} \\ & V_{P-P} \end{aligned}$
	$\mathrm{V}_{S}=5 \mathrm{~V}$, Pin $3=2 \mathrm{~V}$		\bullet	3.7	3.9		$\begin{aligned} & V_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$
	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$, Pin 5 Shorted to Pin 7, R LOAD $=20 \mathrm{k}$				8.5		$V_{\text {P-P }}$

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}\left(\mathrm{~V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}\right)$, $\mathrm{f}_{\text {CLK }}=4.096 \mathrm{MHz}$, $\mathrm{f}_{\text {CUTOFF }}=64 \mathrm{kHz}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k}$ unless otherwise specified.

Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: DC offset is measured with respect to Pin 3.
Note 3 : If the internal oscillator is used as the clock source and the divide-by-4 or divide-by-16 mode is enabled, the supply current is reduced as much as 40% relative to the divide-by-1 mode.

Note 4: The maximum clock frequency is arbitrarily defined as the frequency at which the filter AC response exhibits >1dB of gain peaking.
Note 5: The minimum clock frequency is arbitrarily defined as the frequecy at which the filter DC offset changes by more than 5 mV .
Note 6: For more details refer to the Input and Output Voltage Range paragraph in the Applications Information section.

TYPICAL PERFORMARCE CHARACTERISTICS

1569-6 G05

5V Supply Current

PIn functions

$\mathbf{I N}^{+} / \mathbf{N}^{-}$(Pins 1, 2): Signals can be applied to either or both input pins. The DC gain from IN ${ }^{+}$(Pin 1) to OUT (Pin 8) is 1.0, and the DC gain from Pin 2 to Pin 8 is -1 . The input range, input resistance and output range are described in the Applications Information section. Input voltages which exceed the power supply voltages should be avoided. Transients will not cause latchup if the current into/out of the input pins is limited to 20 mA .

GND (Pin 3): The GND pin is the reference voltage for the filter and should be externally biased to 2 V (1.11V) to maximize the dynamic range of the filter in applications using a single 5 V (3V) supply. For single supply operation, the GND pin should be bypassed with a quality $1 \mu \mathrm{~F}$ ceramic capacitor to V^{-}(Pin 4). The impedance of the circuit biasing the GND pin should be less than $2 k \Omega$ as the GND pin generates a small amount of AC and DC current. For dual supply operation, connect Pin 3 to a high quality DC ground. A ground plane should be used. A poor ground will increase DC offset, clock feedthrough, noise and distortion.
$\mathbf{V}^{-} / \mathbf{N}^{+}$(Pins 4, 7): For $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ applications a quality $1 \mu \mathrm{~F}$ ceramic bypass capacitor is required from V^{+} (Pin 7) to V^{-}(Pin 4) to provide the transient energy for the internal clock drivers. The bypass should be as close as possible to the IC. In dual supply applications (Pin 3 is grounded), an additional $0.1 \mu \mathrm{~F}$ bypass from $\mathrm{V}^{+}(\operatorname{Pin} 7)$ to GND (Pin 3) and V^{-}(Pin 4) to GND (Pin 3) is recommended.

The maximum voltage difference between GND (Pin 3) and V^{+}(Pin 7) should not exceed 5.5V.

DIV/CLK (Pin 5): DIV/CLK serves two functions. When the internal oscillator is enabled, DIV/CLK can be used to engage an internal divider. The internal divider is set to $1: 1$ when DIV/CLK is shorted to V^{-}(Pin 4). The internal divider is set to $4: 1$ when DIV/CLK is allowed to float (a 100 pF bypass to V^{-}is recommended). The internal divider is set to $16: 1$ when DIV/CLK is shorted to V^{+}(Pin 7). In the divide-by-4 and divide-by-16 modes the power supply current is reduced by as much as 40%.

When the internal oscillator is disabled (R_{X} shorted to V^{-}) DIV/CLK becomes an input pin for applying an external clock signal. For proper filter operation, the clock waveform should be a squarewave with a duty cycle as close as possible to 50% and CMOS voltages levels (see Electrical Characteristics section for voltage levels). DIV/ CLK pin voltages which exceed the power supply voltages should be avoided. Transients will not cause latchup if the fault current into/out of the DIV/CLK pin is limited to 40 mA .
\mathbf{R}_{X} (Pin 6): Connecting an external resistor between the R_{X} pin and $\mathrm{V}^{+}(\operatorname{Pin} 7)$ enables the internal oscillator. The value of the resistor determines the frequency of oscillation. The maximum recommended resistor value is 40 k and the minimum is 3.8 k . The internal oscillator is disabled by shorting the R_{X} pin to V^{-}(Pin 4). (Please refer to the Applications Information section.)
OUT (Pin 8): Filter Output. This pin can drive $10 \mathrm{k} \Omega$ and/or 40pF loads. For larger capacitive loads, an external 100Ω series resistor is recommended. The output pin can exceed the power supply voltages by up to $\pm 2 \mathrm{~V}$ without latchup.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Self-Clocking Operation

The LTC1569-6 features a unique internal oscillator which sets the filter cutoff frequency using a single external resistor. The design is optimized for $\mathrm{V}_{S}=3 \mathrm{~V}$, $\mathrm{f}_{\text {CUTOFF }}=$ 64 kHz , where the filter cutoff frequency error is typically $<1 \%$ when a 0.1% external 10 k resistor is used. With different resistor values and internal divider settings, the cutoff frequency can be accurately varied from 1 kHz to 64 kHz . As shown in Figure 1, the divider is controlled by the DIV/CLK (Pin 5). Table 1 summarizes the cutoff frequency vs external resistor values for the divide-by-1 mode.

Figure 1

Table1. f Cutoff vs $\mathrm{R}_{\text {EXT }}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Divide-by- 1 Mode

REXT	Typical fcutoff	Typical Variation of fcutoff
$3844 \Omega^{*}$	$\mathrm{~N} / \mathrm{A}$	$\pm 3.0 \%$
$5010 \Omega^{\star}$	N / A	$\pm 2.5 \%$
10 K	64 kHz	$\pm 1 \%$
20.18 k	32 kHz	$\pm 2.0 \%$
40.2 k	16 kHz	$\pm 3.5 \%$

${ }^{*} \mathrm{R}_{\text {EXT }}$ values less than 10 k can be used only in the divide-by- 16 mode.
In the divide-by-4 and divide-by-16 modes, the cutoff frequencies in Table 1 will be lowered by 4 and 16 respectively. When the LTC1569-6 is in the divide-by-4 and divide-by-16 modes the power is automatically reduced. This results in up to a 40\% power savings.
The power reduction in the divide-by-4 and divide-by-16 modes, however, effects the fundamental oscillator frequency. Hence, the effective divide ratio will be slightly different from $4: 1$ or $16: 1$ depending on V_{S}, T_{A} and $R_{\text {EXT }}$. Typically this error is less than 1% (Figures 4 and 6).
The cutoff frequency is easily estimated from the equation in Figure 1. Examples 1 and 2 illustrate how to use the graphs in Figures 2 through 7 to get a more precise estimate of the cutoff frequency.
Example 1: LTC1569-6, REXT $=20 \mathrm{k}, \mathrm{V}_{S}=3 \mathrm{~V}$, divide-by-16 mode, DIV/CLK (Pin 5) connected to $\mathrm{V}^{+}(\operatorname{Pin} 7), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

APPLLCATIONS Information

Using the equation in Figure 1, the approximate filter cutoff frequency is $\mathrm{f}_{\text {CUTOFF }}=64 \mathrm{kHz} \cdot(10 \mathrm{k} / 20 \mathrm{k})$ - $(1 / 16)=2 k H z$.

For a more precise foutoff estimate, use Table 1 to get a value of $\mathrm{f}_{\text {CUTOFF }}$ when $\mathrm{R}_{\text {EXT }}=20 \mathrm{k}$ and use the graph in Figure 6 to find the correct divide ratio when $\mathrm{V}_{S}=3 \mathrm{~V}$ and $R_{\text {EXT }}=20 \mathrm{k}$. Based on Table 1 and Figure 6, $f_{\text {CutOFF }}$ $=32 \mathrm{kHz} \bullet(20.18 \mathrm{k} / 20 \mathrm{k}) \bullet(1 / 16.02)=2.01 \mathrm{kHz}$.

From Table 1, the part-to-part variation of $\mathrm{f}_{\text {CUTOFF }}$ will be $\pm 2 \%$. From the graph in Figure 7, the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ drift of $f_{\text {CUTOFF }}$ will be -0.2% to 0.2%.
Example 2: LTC1569-6, $\mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k}, \mathrm{V}_{S}=5 \mathrm{~V}$, divide-by-1 mode, DIV/CLK (Pin 5) connected to $\mathrm{V}^{-}(\operatorname{Pin} 4), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

1569-6 F02
Figure 2. Filter Cutoff vs $\mathrm{V}_{\text {SUPPL }}$, Divide-by-1 Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 4. Typical Divide Ratio in the Divide-by-4 Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Using the equation in Figure 1, the approximate filter cutoff frequency is $\mathrm{f}_{\text {CUTOFF }}=64 \mathrm{kHz} \cdot(10 \mathrm{k} / 10 \mathrm{k})$ - $(1 / 1)=64 \mathrm{kHz}$.

For a more precise $\mathrm{f}_{\text {Cutoff }}$ estimate, use Figure 2 to correct for the supply voltage when $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. From Table 1 and Figure 2, $\mathrm{f}_{\text {CUTOFF }}=64 \mathrm{k} \bullet(10 \mathrm{k} / 10 \mathrm{k}) \bullet 0.970$ $=62.1 \mathrm{kHz}$.

The oscillator is sensitive to transients on the positive supply. The IC should be soldered to the PC board and the PCB layout should include a $1 \mu \mathrm{~F}$ ceramic capacitor between V^{+}(Pin 7) and V^{-}(Pin 4), as close as possible to the IC to minimize inductance. Avoid parasitic capacitance on R_{X} and avoid routing noisy signals near R_{X} (Pin 6). Use

Figure 3. Filter Cutoff vs Temperature, Divide-by-1 Mode, $\mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k}$

1569-6 F05
Figure 5. Filter Cutoff vs Temperature, Divide-by-4 Mode, REXT = 10k

APPLICATIONS InFORMATION

Figure 6. Typical Divide Ratio in the Divide-by-16 Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 7. Filter Cutoff vs Temperature, Divide-by-16 Mode, REXT = 10k
input signal at IN ${ }^{+}$should be centered around the DC voltage at IN^{-}. The input can also be AC coupled, as shown in the Typical Applications section.
For inverting single-ended filtering, connect IN+ to GND or to quiet DC reference voltage. Apply the signal to IN^{-}. The DC gain from IN^{-}to OUT is -1 , assuming IN^{-}is referenced to IN^{+}and OUT is reference to GND.
Refer to the Typical Performance Characteristics section to estimate the THD for a given input level.

Dynamic Input Impedance

The unique input sampling structure of the LTC1569-6 has a dynamic input impedance which depends on the configuration, i.e., differential or single-ended, and the clock frequency. The equivalent circuit in Figure 8 illustrates the input impedance when the cutoff frequency is 64 kHz . For other cutoff frequencies replace the 125 k value with $125 \mathrm{k} \cdot(64 \mathrm{kHz} / \mathrm{f}$ CUTOFF).

When driven with a single-ended signal into IN^{-}with IN^{+} tied to GND, the input impedance is very high ($\sim 10 \mathrm{M} \Omega$). When driven with a single-ended signal into IN^{+}with IN^{-} tied to GND, the input impedance is a 125 k resistor to GND. When driven with a complementary signal whose common mode voltage is GND, the IN+ input appears to have 125 k to GND and the IN- input appears to have -125k to GND. To make the effective IN^{-}impedance 125 k when driven differentially, place a 62.5 k resistor from IN^{-}to GND. For other cutoff frequencies use 62.5 k • ($64 \mathrm{kHz} /$

APPLLCATIONS INFORMATION
$f_{\text {CUTOFF }}$), as shown in the Typical Applications section. The typical variation in dynamic input impedance for a given clock frequency is $\pm 10 \%$.

Wideband Noise

The wideband noise of the filter is the RMS value of the device's output noise spectral density. The wideband noise data is used to determine the operating signal-tonoise at a given distortion level. The wideband noise is nearly independent of the value of the clock frequency and excludes the clock feedthrough. Most of the wideband noise is concentrated in the filter passband and cannot be removed with post filtering (Table 2). Table 3 lists the typical wideband noise for each supply.
Table 2. Wideband Noise vs Supply Voltage, Single 3V Supply

Bandwidth	Total Integrated Noise
$D C$ to $f_{\text {CUTOFF }}$	$80 \mu V_{\text {RMS }}$
$D C$ to $2 \bullet f_{\text {CUTOFF }}$	$95 \mu V_{\text {RMS }}$
DC to $f_{\text {CLK }}$	$110 \mu V_{\text {RMS }}$

Table 3. Wideband Noise vs Supply Voltage, $\mathrm{f}_{\text {Cutoff }}=\mathbf{6 4 k H z}$

Power Supply	Total Integrated Noise DC to $2 \bullet f_{\text {CUTOFF }}$
3 V	$95 \mu \mathrm{~V}_{\text {RMS }}$
5 V	$100 \mu \mathrm{~V}_{\text {RMS }}$
$\pm 5 \mathrm{~V}$	$105 \mu \mathrm{~V}_{\text {RMS }}$

Clock Feedthrough

Clock feedthrough is defined as the RMS value of the clock frequency and its harmonics that are present at the filter's OUT pin (Pin 8). The clock feedthrough is measured with IN^{+}and IN^{-}(Pins 1 and 2) grounded and depends on the PC board layout and the power supply decoupling. Table 4 shows the clock feedthrough (the RMS sum of the first 11 harmonics) when the LTC1569-6 is self-clocked with $R_{E X T}=10 k$, DIV/CLK (Pin 5) open (divide-by-4 mode). The clock feedthrough can be reduced with a simple RC post filter.
Table 4. Clock Feedthrough

Power Supply	Feedthrough
3 V	0.1 mV RMS
5 V	0.3 mV RMS
$\pm 5 \mathrm{~V}$	0.9 mV RMS

DC Accuracy

DC accuracy is defined as the error in the output voltage after DC offset and DC gain errors are removed. This is similar to the definition of the integral nonlinearity in A / D converters. For example, after measuring values of $\mathrm{V}_{\text {OUT(}}$ (DC) vs $V_{I N(D C)}$ for a typical LTC1569-6, a linear regression shows that $\mathrm{V}_{0 U T(D C)}=\mathrm{V}_{\operatorname{IN}(\mathrm{DC})} \bullet 0.99854+0.00134 \mathrm{~V}$ is the straight line that best fits the data. The DC accuracy describes how much the actual data deviates from this straight line (i.e., DCERROR $=V_{\text {OUT (DC) }}-\left(V_{\text {IN (DC) }}{ }^{\bullet} 0.99854\right.$ +0.00134 V). In a 12-bit system with a full-scale value of 2 V , the LSB is $488 \mu \mathrm{~V}$. Therefore, if the DCERROR of the filter is less than $488 \mu \mathrm{~V}$ over a 2 V range, the filter has 12-bit DC accuracy. Figure 9 illustrates the typical DC accuracy of the LTC1569-6 on a single 5V supply.

DC Offset

The output DC offset of the LTC1569-6 is trimmed to less than $\pm 5 \mathrm{mV}$. The trimming is performed with $\mathrm{V}_{S}=1.9 \mathrm{~V}$, -1.1 V with the filter cutoff frequency set to $4 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{EXT}}=\right.$ 10k, DIV/CLK shorted to V^{+}). To obtain optimum DC offset performance, appropriate PC layout techniques should be used. The filter IC should be soldered to the PC board. The power supplies should be well decoupled including a $1 \mu \mathrm{~F}$ ceramic capacitor from V^{+}(Pin 7) to V^{-}(Pin 4). A ground plane should be used. Noisy signals should be isolated from the filter input pins.
When the power supply is 3 V , the output DC offset should change less than $\pm 2 \mathrm{mV}$ when the clock frequency varies from 64 kHz to 4096 kHz . When the clock frequency is fixed, the output DC offset will typically change by less than $\pm 3 \mathrm{mV}(\pm 15 \mathrm{mV})$ when the power supply varies from 3 V to $5 \mathrm{~V}(\pm 5 \mathrm{~V})$ in the divide-by- 1 mode. In the divide-by4 or divide-by-16 modes, the output DC offset will typically change less than $-9 \mathrm{mV}(-27 \mathrm{mV})$ when the power supply varies from 3 V to $5 \mathrm{~V}(\pm 5 \mathrm{~V})$. The offset is measured with respect to GND (Pin 3).

Aliasing

Aliasing is an inherent phenomenon of sampled data filters. In lowpass filters significant aliasing only occurs when the frequency of the input signal approaches the sampling frequency or multiples of the sampling fre-

LTC1569-6

APPLICATIONS InFORMATION

quency. The LTC1569-6 samples the input signal twice every clock period. Therefore, the sampling frequency is twice the clock frequency and 128 times the filter cutoff
frequency. Input signals with frequencies near 2 • $f_{\text {CLK }}$ $\pm \mathrm{f}_{\text {CutOFF }}$ will be aliased to the passband of the filter and appear at the output unattenuated.

Figure 8

1569-6 F09

Figure 9

TYPICAL APPLICATIONS

Single 3V Operation, AC Coupled Input, 64kHz Cutoff Frequency

Single 3V, AC Coupled Input, 64kHz Cutoff Frequency

TYPICAL APPLICATIONS

Single 3V Supply Operation, DC Coupled, 16kHz Cutoff Frequency

Single 5V Operation, 50kHz Cutoff Frequency, DC Coupled Differential Inputs with Balanced Input Impedance

$\pm 5 \mathrm{~V}$ Supply Operation, DC Coupled Filter with External Clock Source

Pulse Shaping Circuit for Single 3V Operation, 128kbps 2-Level Data, 64kHz Cutoff Filter

* SEE APPLICATIONS INFORMATION, "INPUT AND OUTPUT VOLTAGE RANGE"

2-Level, 128kbps Eye Diagram

LTC1569-6

TYPICAL APPLICATIONS

Pulse Shaping Circuit for Single 3V Operation, 200kbps (100ksps) 4-Level Data, 64kHz Cutoff Filter

* SEE APPLICATIONS INFORMATION, "INPUT AND OUTPUT VOLTAGE RANGE"

4-Level, 200kbps (100ksps) Eye Diagram

PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1064-3	Linear Phase, Bessel 8th Order Filter	$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}=75 / 1$ or 150/1, Very Low Noise
LTC1064-7	Linear Phase, 8th Order Lowpass Filter	$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50 / 1$ or 100/1, $\mathrm{f}_{\text {CUTOFF(MAX) }}=100 \mathrm{kHz}$
LTC1069-7	Linear Phase, 8th Order Lowpass Filter	$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=25 / 1, \mathrm{f}_{\text {CUTOFF }}(\mathrm{MAX})=200 \mathrm{kHz}, \mathrm{SO}-8$
LTC1164-7	Low Power, Linear Phase Lowpass Filter	$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CuTOFF }}=50 / 1$ or $100 / 1, \mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$
LTC1264-7	Linear Phase, 8th Order Lowpass Filter	$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=25 / 1$ or 50/1, $\mathrm{f}_{\text {CUTOFF(MAX) }}=200 \mathrm{kHz}$
LTC1562/LTC1562-2	Universal, 8th Order Active RC Filter	$\begin{aligned} & \mathrm{f}_{\text {CUTOFF(MAX) }}=150 \mathrm{kHz}(\text { LTC1562 }) \\ & \mathrm{f}_{\text {CUTOFF(MAX) }}=300 \mathrm{kHz}(\text { LTC1562-2 }) \end{aligned}$
LTC1563-2/LTC1563-3	Active RC, 4th Order Lowpass	$\mathrm{f}_{\text {CutOFF(MAX) }}=300 \mathrm{kHz}$, Very Low Noise
LTC1569-7	Linear Phase DC Accurate, 10th Order	$\mathrm{f}_{\text {CUTOFF(MAX) }}=300 \mathrm{kHz}$, No Clock Required

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
LTC1569CS8-6\#PBF LTC1569IS8-6\#TRPBF LTC1569IS8-6\#PBF LTC1569CS8-6\#TRPBF DC626A-A

[^0]: $\overline{\mathbf{1 7}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

